化合物合金中への重イオン照射による 微細構造変化とアモルファス化

Wosaka Prefecture 大阪府立大学大学院工学研究科 University 堀史説

共同研究者

石川法人、喜多村茜(原子力基礎工学研究センター) 松井利之、岩瀬彰宏(大阪府立大学) 大学院生:鷹野陽弘、杉田健人、山田智子ほか(大阪府立大)

照射実験

線種	電子	電子	Н	He	С	Ar, Xe, Kr	Ni, Au	Al, Fe, Ni, I	Au
エネルギー	0.5-2MeV	8-32MeV	20keV −1.5MeV	180keV -10MeV	7MeV	2.5MeV −200MeV	100MeV −200MeV	20keV −18MeV	2.25GeV
照射量(/cm²)	10 ¹⁷ ~10 ¹⁸	10 ¹⁷ ~10 ¹⁸	10 ¹⁵	10 ¹⁵ ~10 ¹⁶	10 ¹⁵	10 ¹¹ ~10 ¹⁴	10 ¹¹ ~10 ¹⁴	10 ¹¹ ~10 ¹²	10 ¹¹ ~10 ¹²
温度	室温	77K-室温	室温	室温	室温	室温	室温	室温	室温
施設	*1,5	*2	*1,3	*1, 3	*4	*4, 5	*5	*4	*6

*1 量子応用科学研究開発機構高崎量子応用研究所

*2 京都大学原子炉実験所 LINAC

*3 若狭湾エネルギー研究センター

*5 大阪府立大学放射線研究センター

*4日本原子力研究開発機構東海研究所

*6 Germany's Heavy-Ion Nuclear Physics Laboratory UNILAC

-材料プロセシング-

粒子線照射による材料改質法

析出型

熱時効と同様にマトリクス中に析出物を形成させる 不純物を注入して合金化、析出を形成させる

格子欠陥型

照射領域に格子欠陥を導入し材料特性を変える

構造相転移型

照射領域のみ非平衡相を誘起し材料特性を変える

アモルファス化型

構造相転移と類似だが、非晶質は通常の合金では出現しにくい

AI合金への重イオン照射による硬度制御 [析出型]

FeRh合金へのイオン照射による 磁性制御 [格子欠陥型]

Al-Cu-Mg合金中で熱処理で成長する析出物と照射 で生成する析出物との違いが強度に大きく影響する

T.Mitsuda et al., J. Nucl. Mater. 408 (2011) pp. 201-204.

FeRh合金にマイクロイオンビーム照射した 領域のみ磁性が変化(磁気力顕微鏡像)

結晶とアモルファス

アモルファスは、高強度、低電気伝導、軟磁性

化合物合金(Ni基金属間化合物)

H.kojima et al., Materials Transactions, Vol. 58, No. 5 (2017) p. 739

化合物合金の照射硬化の合金種依存性

照射硬化とアモルファス化との相関

化合物合金の規則相-不規則相の関係性

これまでの成果

アモルファス化の合金種依存性

アモルファス化 → 硬度上昇

照射誘起アモルファス化の統一的な見解はまとまっていない

急冷による化合物合金のアモルファス化

アモルファス化し易い条件とは?

ガラス形成能の高い合金での照射効果

バルクのZr基金属間化合物への重イオン照射による 照射変化機構や、硬度制御に対する知見を得る。

着目点

- ・Ni基合金に比べてアモルファス化し易いのか
- ・照射による組織変化と力学特性との相関

実験方法

<u>試料</u>

$0.5mm \; x \; 8mm \; \phi \; \; disc$

≻組成: Zr₅₀Cu₄₀Al₁₀ ▶形状: ディスク状に切り出し (0.5mm × 8mm φ)

粒子線照射

線種	Xe ¹⁴⁺	Au ¹⁴⁺
エネルギー	200MeV	200MeV
温度	RT	RT
<u>照射量(/cm²)</u>	$1 \times 10^{14}, 5 \times 10^{14}, 1 \times 10^{15}$	1×10^{14}
照射施設	タンデム加速器(JAEA東海)	タンデム加速器(JAEA東海)

実験方法

測定手法

空孔の挙動 構造変化 ・X線回折測定 ・陽電子寿命測定 X線源 陽電子源 ²²Na Cu-Ka **カウント数** 10⁶count スキャン角度 20°~80° ・同時計数ドップラー拡がり測定 ・広域X線吸収微細構造測定 蛍光法 陽電子源 ^{22}Na 吸収端 **カウント数** 10⁷ count Cu-K

機械的特性

・マイクロビッカース硬さ測定
 試験荷重 10gf
 保持時間 10s

実験結果 ビッカース硬さ

X線回折測定 -重イオン照射-

ビッカース硬さ

同じビッカース硬さでのXRDの比較

Ni₃Nbとの比較

結晶相によって照射効果が異なっている

Ni₃Nbとの比較

照射効果の合金種依存性

照射による硬さ変化が真逆

陽電子寿命測定

200 MeV Xe 1x10¹⁴ /cm²

	試料	陽電子寿命(ps)
-	未照射	154
Xe	200MeV	175
Au	200MeV	175

欠陥は陽電子消滅する領域で均一ではない

陽電子寿命測定 -各種イオン照射後-

~140µm(陽電子の飛程)

 $\sim 12.9 \mu m$

侵入深さの割合のみで実際の空孔を考察

陽電子寿命の実測平均値をτ、 照射領域の平均値をx₂とする x₂ x I₂ + τ₁ x I₁ = τ 結晶バルク寿命値:τ₁ = 154 ps

1x10¹⁴ /cm²

$$I_1 = 79\%, I_1 + I_2 = 100\%$$

 $\tau = 175 \text{ ps}$
 $x_2 = 221 \text{ ps}$

1x10¹⁵ /cm² $I_1 = 79\%, I_1 + I_2 = 100\%$ $\tau = 179$ ps $x_2 = 273$ ps

Zr₅₀Cu₄₀Al₁₀合金(実測値)

試 料	陽電子寿命(ps)
結晶	154
アモルファス	166

参照値

試 料	陽電子寿命(ps)
Zr (hcp)※	159
Cu (fcc)※	106
Cu (fcc)の 単一空孔※	155
Al (fcc)※	166

※F. Hori et al. / Journal of Alloys and Compound, 434–435 (2007) 207–21

まとめ

•Zr基合金(アモルファス化やすい)においても重イオン照 射によってアモルファス化が観察された

・Zr基合金ではアモルファス化による機械的強度減少(硬 さの低下)が見られ、他の合金とは異なる結果が得られた

・アモルファス化過程で多量の空隙(空孔)が蓄積されていた

→必ずしも急冷法で生成するアモルファスとは同じでない 状態の可能性がある

・結晶相によって照射効果による変化は一様でない