不安定核停止標的を用いた核物理と天体反応の研究

## <u>Atsushi Tamii</u>

## Azusa Inoue

#### Research Center for Nuclear Physics (RCNP) Osaka University, Japan

### for the BRILLIANT collaboration

東海・重イオン科学シンポジウム
- タンデム加速器成果報告会 2020.1.15-16 at JAEA, Tokai

# BRILLIANT 不安定核停止標的を用いた順運動学反応による核分光

Beam system for Reaction of Isotopes of Long-life with Light-Ions Applying Normal kinemaTics

不安定核・安定核のインプラント標的

軽イオン散乱による励起状態や共鳴状態 の測定

マイクロスポット高強度ビーム スペクトメータを用いた高分解能・低 運動量移行実験









Phase-I

Dramatically expands the research field of nuclear excited states with light-ion reactions!

- N=Z Nuclei
- · Odd-Odd Nuclei
- · Long-life Isomer / High-Spin Nuclei
- · Dual targets of the ground state and an isomer
- · Largely deformed nuclei
- Momentum-Transfer-Less Reaction
- Direct comparison of β-decay and CEX reactions
- · Polarization, Decay Meas., Unstable+Unstable

|             | Stable-10 <sup>10</sup> y | $T_{1/2} > 1 \text{ day}$ | $T_{1/2} > 1 \min$ |
|-------------|---------------------------|---------------------------|--------------------|
| Nuclides    | 282                       | 624                       | 1480               |
| Isomers     | 1                         | 50                        | 310                |
| N=Z Nuclei  | 13                        | 17                        | 24                 |
| Odd-Odd     | Á                         | 92                        | 333                |
| Max Spin    | 9                         | 16                        | 37/2               |
| Ni Isotopes | 58-64                     | 56-66                     | 56-66              |
| Zr Isotopes | 90-96                     | 88-96                     | 84-97              |
| Sn Isotopes | 112-124                   | 112-126                   | 106-130            |
| Pb Isotopes | 204-208                   | 202-210                   | 190-214            |
|             |                           |                           |                    |

534 nuclides for  $T_{1/2} > 5$  days

# BRILLIANT計画@RCNP

<u>Beam system for Reaction of Isotopes of Long life with Light lons Applying Normal kinematics</u>



# BRILLIANT計画@RCNP

<u>Beam system for Reaction of Isotopes of Long life with Light lons Applying Normal kinematics</u>



☑ 質量欠損法で励起状態を一気に測定(崩壊粒子の同時測定も重要)

## Stopped RI Target: Implantation

 $\diamond~$  Implantation exp. at CRIB (May 2018)



by A. Inoue

one day of irradiation

<sup>7</sup>Be: 1.9×10<sup>12</sup> in 2mmo

## Stopped RI Target: Activation



by A. Inoue

Study of the contribution of the <sup>7</sup>Be(d, p) reaction to the <sup>7</sup>Li problem in the Big-Bang Nucleosynthesis

#### Azusa INOUE RCNP, Osaka University, Japan

and the BRILLIANT collaboration



## <sup>7</sup>Li problem



http://courses.atlas.illinois.edu/spring2010/ASTR/ASTR596/Lectures/Lect24.html

### How to solve the problem



 $\checkmark$  To know the cross section of the nuclear reaction is important.

 $\checkmark$  We focus on to approach from nuclear reaction.

# <sup>7</sup>Li production

• Main component of <sup>7</sup>Li production is the  $\beta$  decay of <sup>7</sup>Be



## <sup>7</sup>Be destruction

- ✓ Destructive process of <sup>7</sup>Be
  - ✓ <sup>7</sup>Be(n, α)<sup>8</sup>Be...
  - ✓ <sup>7</sup>Be(n, p)<sup>7</sup>Li...
  - ✓ <sup>7</sup>Be(d, p)<sup>8</sup>Be...



is in Big Bang energy region!

<sup>7</sup>Be(d, p) cross section have to be measured at the BBN energy.

### Present status of <sup>7</sup>Be(d, p) study



## Activation method

#### Irradiate solid natural Li target using a proton beam

<sup>7</sup>Be is created via <sup>7</sup>Li(p, n)<sup>7</sup>Be reaction



Solid nat. Li target

Tandem facility, Kobe Univ. (Feb. 2019)



Tandem facility, Kobe Univ. (Feb. 2019)





Tandem facility, Kobe Univ. (Feb. 2019)



## Experiment - (d, p) reaction measurement



### **Experiment** -Data



### **Experiment** -Data



## Summary

#### Motivation

- ♦ Study of the cosmological <sup>7</sup>Li problem from nuclear reaction.
- $\diamond$  Measurement of the <sup>7</sup>Be(d, p) reaction in the BBN energy region.
- ◊ Unstable <sup>7</sup>Be target

#### Achievement and Result

- $\diamond$  We succeeded in producing a <sup>7</sup>Be target (2.6 × 10<sup>13</sup> particles)
- ◊ Obtained the preliminary cross section
- ◇ The <sup>7</sup>Be(d, p) reaction would not contribute to solve the <sup>7</sup>Li problem.

#### Remaining works

- ◊ The 2+ state (<sup>7</sup>Be(d, p)<sup>8</sup>Be\* data)
- ♦ Analysis of E<sub>d</sub> = 0.86, 1.00 MeV
- ◊ More precise result will be coming soon.