

105番元素Dbの オンライン等温ガスクロマトグラフ挙動

佐藤哲也, N. M. Chiera, 富塚知博, 床 井健運, 鈴木颯人, 伊藤由太, 浅井雅人, 白井香里, 井上浩樹, 安達サディア, 柏 原歩那, 牧井宏之, 廣瀬健太郎, 西尾 勝久, 永目諭一郎, 渡邉瑛介, 阪間稔, 後藤真一, 塚田和明

原子力機構・PSI・新潟大院・茨城大院・筑波大院・大阪大院・徳島大院

2020 東海・重イオン科学シンポジウム(2020/1/15-16 @ JAEA)

Superheavy Elements (SHEs)

- Short half-lives

²⁶²Db: $T_{1/2} = 34$ s, 1 atom/10 min

- Low production rate

1					1	UPAC	Period	dic Tal	ole of	the Ele	ement	S				24	18
1 H hydrogen 1998 (1.0078, 1.0082]	2		Кеу:						70 7 V 7. 7 V			13	14	15	16	17	2 He helium 4.0026
3 Li ithium 6.94 (5.235, 6.997)	4 Be beryflum 9.0122		atomic num Symbo name orivertione stands standard atomic w	ber DI wigtz wigtz								5 B boron 1081 [10.806, 10.821]	6 C carbon 12.011 [12.008, 12.012]	7 N nitrogen 94.007 [14.006, 14.008]	8 0 0 (15. 999, 16.000)	9 F fluorine 18.908	10 Ne neon 20.180
11 Na sodum 22.990	12 Mg magnesium 24.305 (24.304, 24.307)	3	4	5	6	7	8	9	10	11	12	13 Al aluminium 26.962	14 Si silicon 28:05 (28:064, 28:060)	15 P phospharus 30.974	16 S suffur 32.06 [32, 050, 32, 070]	17 Cl 25.45 (25.448, 35.457)	18 Ar argon 38.948
19 K potassium 39.090	20 Ca calcium 40.078(4)	21 Sc scandum	22 Ti titanium 47.867	23 V vanadium	24 Cr chromium	25 Mn manganese 54.938	26 Fe iron	27 Co cobalt 56.933	28 Ni nickel	29 Cu copper 63.546(3)	30 Zn 2inc 65,38(2)	31 Ga gallium	32 Ge germanium 72.630(8)	33 As arsenic 74,822	34 Se selenium 78.97100	35 Br bromine 78804 179.901, 79.9071	36 Kr krypton
37 Rb rubidium	38 Sr strontium	39 Y yttrium	40 Zr zirconium	41 Nb niobium	42 Mo molybdenum	43 Tc technetium	44 Ru ruthenium	45 Rh rhođium	46 Pd pelladium	47 Ag silver	48 Cd cadmium	49 In Indium	50 Sn tin	51 Sb antimony	52 Te tellurium	53 iodine	54 Xe xenon
55 Cs caesium	56 Ba barlum	57-71 Ianthanoids	72 Hf hatnium	73 Ta tantalum	74 W tungsten	75 Re menium	76 OS osmium	77 Ir indum	78 Pt platinum	79 Au gold	80 Hg mercury	81 TI thallium 201-30 12014-301	82 Pb kad	83 Bi bismuth	84 Po polonium	85 At astatne	86 Rn radon
87 Fr francium	88 Ra radium	89-103 actinoids	104 Rf rutherfordium	105 Db dubnium	106 Sg seaborgium	107 Bh bohrium	108 Hs hassium	109 Mt meitnerium	110 DS darmstadtium	111 Rg roentgenium	112 Cn copernicium	113 Nh nihonium	114 Fl flerovium	115 Mc moscovium	116 Lv Ivermorium	117 Ts tennessine	118 Og oganesso

INTERNATIONAL UNION OF

57 60 58 59 61 62 63 64 65 -66 67 68 69 70 71 Er La Ce Pr Nd Pm Sm Eu Gd Tb terbium Dy dysprosium Ho Tm Yb Lu corium seodym reodymiun promethius samarium europium gadolinium holmium thulium ytterbium 138.91 140.12 140.91 144.26 150.36(2) 101.96 157.25(2) 158.93 162.50 164.93 367.20 168.93 173.05 174.97 90 94 97 100 102 103 RA 91 92 89 95 96 98 99 101 Th Pa U Np Pu Bk Cf Es Ac Am Cm Fm Md No Lr PURE AND APPLIED CHEMISTRY actinium thorium protacéniun uranium plutonium berkelium californium einsteinkan fermium nobelium lawrencium amonicium ounium nendeleviu 238.03

Isothermal gas chromatography (

Group-5 elements have a high tendency to react with **halides**, forming **volatile pentahalides** (NbBr₅, NbCl₅, TaCl₅, etc.) However, even with trace amounts of **oxygen in the gas phase**, the formation of **oxyhalides** (e.g., NbOCl₃, TaOBr₃, etc.) is favored.

Page 4

Group-5 halides and oxyhalides

A. Türler et al. Radiochim. Acta 73, 55 (1996)

Group-5 elements have a high tendency to react with **halides**, forming **volatile pentahalides** (NbBr₅, NbCl₅, TaCl₅, etc.) However, even with trace amounts of **oxygen in the gas phase**, the formation (of **oxyhalides** (e.g., NbOCl₃, TaOBr₃, etc.) is favored.

<u>Results up-to-now (relative volatility):</u>

$NbCl_5 \approx DbCl_5$	$NbBr_5 \approx DbBr_5$	Zvara et al., 1973			
$NbCl_5 > DbCl_5$	$NbBr_5 > DbBr_5$	Zvara et al., 1991			
$NbBr_5 > TaOBr_3 >$	DbOBr ₃	Gäggeler et al., 1992			
$NbCl_5 \approx DbCl_5 > T$	aOCI ₃	Kadkhodayan et al., 1993			
$NbCl_5 \ge DbCl_5 > N$	$bOCl_3 > DbOCl_3$	Türler et al., 1996			
$DbBr_5 > NbBr_5 > T$	$TaBr_5 > NbOBr_3$	Lin et al., 2012			

Objectives of this study

- Systematic gas-phase chemical exploration of Ta-, Nb-, and Db- oxychlorides (i.e., TaOCl₃, NbOCl₃, DbOCl₃) in the temperature range 200-600°C
 - Deliberate addition of O_2 in the system

Obtainment of thermochemical information (adsorption and sublimation enthalpies)
Unambiguous establishment of the volatility trend in Group-5 elements $\rm NbOCI_3$ and $\rm TaOCI_3$ simultaneous chemical exploration with the IGC setup

Chemical species	-ΔH _{ads} [this work]	ΔH _{subl} [this work]
NbOCl ₃	102 ⁺⁴ kJ/mol	126 ⁺⁷ ₋₅ kJ/mol
TaOCI ₃	128 ⁺⁷ kJ/mol	165 ⁺¹¹ kJ/mol

NbOCl₃, TaOCl₃, DbOCl₃ isothermal chromatograms

- ΔH_{ads} vs. ΔH_{subl} correlation for oxychlorides

Summary and conclusions

Isothermal gas-chromatographic studies on the volatility of

NbOCl₃, **TaOCl₃** were performed → **reproducible results**;

- Thermodynamic information for NbOCl₃ and TaOCl₃ was deduced in agreement with literature data;
- Experimentally, a NbOCl₃ > TaOCl₃ ≈ DbOCl₃ adsorption

interaction strength was observed;

•The estimated volatility sequence in Group-5 is $Nb > Ta \ge Db$.