タンデム加速器におけるCoulomb励起・in-beam γ 線実験の20年 - GEMINI, GEMINI-IIの稼動時期を中心にして-

Coulomb excitation of odd-*N* nuclei with 240-MeV ⁵⁸Ni beam (^{155,157}Gd, ¹⁶³Dy, ¹⁷³Yb)

H. Kusakari, M. Oshima et al. Phys. Rev. C46 1257(1992)

Inverted signature dependence of *B***(M1)**

GEMINI, GEMINI-IIを用いてこれまで行われた主な研究

I. GOSIA を用いたクーロン励起による完全核分光 (大島,藤,小泉他)

II. Si-ball を用いた in-beam y 線分光

1. 質量数 60 領域核の高スピン状態 (古高,初川 他)

2. 質量数 140 領域における M1 バンドの探索 (菅原, 草刈 他)

3. 質量数150希土類領域の核構造 (早川, 菅原 他)

4. 質量数 30~40 領域核の高スピン状態 (森川, 井手口 他)

III. GEMINI 単独での in-beam γ 線分光

1. 質量数 140 領域における Anti-magnetic Rotorの探索 (菅原, 草刈他)
2. 中性子欠損希土類奇奇核の構造 (Zhang, Zhou et al. from IMP in China)

IV. 多重 γ 線による微量元素分析 (大島,藤他)

I. クーロン励起による完全核分光

Y. Hatsukawa et al. Z. Phys. A359 3(1997)

質量数150希土類領域の核構造

High-spin states in ⁴³Sc

T. Morikawa et al. Phys. Rev. C70 054323(2004)

Reaction : ²⁷Al(¹⁹F, p2n)⁴³Sc at 50-MeV

Spectroscopy of A=30~40 Neutron-Rich Nuclei via Fusion-Evaporation Reactions at JAEA

Cross section of charged-particle channel may be larger than those expected...

	Relative Yield			
	ЕХР	PACE4	ALICE	CASCADE
Sc-43	100	100	100	100
Ca-43	90	87	30	130
S-34	0.4	8.7	0.2	10
P-33	3	0.072	0	0
P-32	0.4	0	0	0
Si-30	0.2	0	0	0

Ti43 Ti44 Ti45 Ti46 Sc43 Sc44 -5.93 **Ca43** 39Ca Ca40 Ca41 Ca42 Ca44 **Z=20** -2.93 K39 K40 K41 K42 **K43** Ar37 Ar38 Ar39 Ar40 **CI37 CI36** +0.94 **S34 Z=16** +3.97**P32 P33** -17.32 -6.91 **Si30** -3.95 Mg31 Mg32 DeformDeform Na27 Vib.

III. ¹⁴⁴DyにおけるAnti-magnetic Rotorの探索

M. Sugawara et al.

A classical particles plus rotor model

A candidate for antimagnetic rotor in ¹⁴⁴Dy

Odd-Odd Nuclei studied so far within JAEA collaboratrion

Y. H. Zhang, X. H. Zhou et al. from IMP in China

Experimental results achieved within JAEA collaboratrion

放射性ヨウ素の簡便な高感度定量(NAAMG)

2. 多重ガンマ線検出法を用いた分析法の開発

論文以外の成果リスト

「多重ガンマ線検出による高感度核種分析方法」 出願番号 特願2000-168638号(平成12年6月6日) 出願公開番号 特開2001-235547号(平成13年8月31日) 大島真澄、初川雄一、早川岳人、藤暢輔、篠原伸夫

GEMINI, GEMINI-II における研究の成果

基礎研究から応用研究まで広い分野に渡っている

タンデム加速器から供給される安定で高品質なビーム

BGOACSGe検出器からなるボー ル型アレイを汎用検出器として、液 体窒素補給系、回路系、データ収 集系、解析ソフト等を含めて常設の システムとして整備した

ガンマ線測定における汎用の検出器として, 今後の維持および発展が強く望まれる!

GEMINI, GEMINI-II 関連の共同研究者リスト

原子力機構:大島真澄、藤 暢輔、小泉光生、早川岳人、木村敦、原田秀郎、古高和禎、中村詔 司、北谷文人、長明彦、初川雄一、静間俊行、市川進一、峰原英介、飯村秀紀、石井哲郎、宇都 野穣、松田誠、片倉純一、篠原伸夫、中村暢彦

筑波大:古野興平、小松原哲郎

千葉大:草刈英榮、中田仁

九大:森川恒安、御手洗志郎、杉光強、大坪慎一、清水良文

福岡教育大:松崎昌之

東大:井手口栄治、大田晋輔

広大:小島康明

新潟大:後藤 淳

KEK:渡辺 裕、平山 賀一、宮武宇也、

理研:稲村卓、橋爪 朗、岸田隆、木寺正憲

中国 近代物理研:Y. H. Zhang, X. H. Zhou

ポーランド ワルシャワ大: T. Czosnyka, M. Zielinska

Systematics of Signature Inversion

Inverted signature dependence of *B***(M1)**

